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Note 

Local Mesh Refinement with 
Finite Elements for Elliptic Problems 

1. INTRODUCTION 

This paper is concerned with finite element methods based on successive mesh 
refinement for the effective treatment of singularities in two dimensional second and 
fourth order elliptic boundary value problems. In each case the problem is defined in a 
rectangular domain 52, with boundary aQ, and the singularity arises on account of 
aJ2 possessing a re-entrant corner. Both problems are restated in weak form in a 
suitable Sobolev space setting (W,m(Q); m = 1, 2 respectively for the second and 
fourth order problems). The domain Q is partitioned into non-overlapping elements 
and with a suitable finite dimensional space Sh the Gale&in technique is applied to 
produce an approximation ah E Sh to the weak solution u E Wp(Q), where Sh C W,m(f2) 
because only conforming trial functions are used. 

The presence of the singularity causes the finite element approximation ah to be 
inaccurate in the neighbourhood of the re-entrant corner. Many adaptations of the 
standard method have been suggested for improving this accuracy; for example the 
use of singular functions to augment the trial function space, see, e.g., Fix [4], Barnhill 
and Whiteman [2], and Griffiths [6], and the use of special isoparametric elements at 
the corner, see e.g. Akin [l], Henshell and Shaw [7] and Wait [8]. We propose here 
to consider the method of successive local mesh refinement in the neighborhood of the 
singularity. 

Finite element trial functions are usually derived from piecewise polynomial 
interpolants. Thus in Section 2 we consider bilinear-CO and bicubic-Cl interpolants 
on the standard square ([0, I] x [0, 11) and show how these can be adapted to 
produce 5-node-Co and 20-node-C? elements. Examples of the application of refine- 
ment schemes based on these interpolants for harmonic and biharmonic problems 
respectively in regions containing slits are given in Section 3. 

2. CONFORMING Co AND Cl TRIAL FUNCTIONS; MESH REFINEMENT 

A key step in the successful application of the Galerkin method is the construction 
of the trial function space Sh. This generally consists of functions which are poly- 
nomial in each element of the partition of D and satisfy over D some global continuity 
property-the conforming condition; in the current cases for example this condition 
is that &, be in Co@) for the second order problem and that uh be in C?(o) for the 
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fourth order problem, where G is the closure of Q. These conditions ensure that in 
each case Sn is a subspace of the appropriate Sobolev space. 

In each element e of the partition the approximating function u~(x, y)ie is derived 
from an interpolating polynomial P[u(x, y)] which interpolates the values of ZJ 
(Lagrange case), and frequently also certain derivatives of u (Hermite case), at nodes 
in the element. In order that &, may satisfy the conforming condition over Sz, a 
suitable choice of nodes and interpolation conditions for P in each element has to be 
made. The normal process is to treat each element in the physical plane separately 
by mapping it onto a standard element E = [0, l] x [0, I] in the E, 7 plane with an 
affine transformation. We therefore now consider interpolation on this standard 
element. 

Let the univariate Nth order Hermite interpolation operator Pt be defined as 

WWI = i 4i(t>f’“w> + ; WP(l), (1) 
LO i=o 

where the {q$(t)}EO and {&(t)}LO are the cardinal basis functions of the Hermite 
two point interpolation on [O, I] and the f”)(z) are point evaluations of the ith order 
derivatives off at the point z. In the square E a bivariate Nth order Hermite inter- 
polation operator can be found by taking the tensor product PEP” so as to form the 
interpolating polynomial 

PC 71) = pm dl = P~P”[W, dl 
= i ZN Mi3 dh) FL@, 0) + i ZN A(5) b(r) F&,(0,1) 

-i’ c u3 43(q) Fi,j(l, 0) i-’ c yu-9 ?Md Fi,i(l, 11, 
i&N i.?<N 

where the interpolation space is the set of monomials 

(2) 

{(%f; 0 < i,j < 2N + I}, 
and 

Fisj 3 ai+jF . 
apaq 

The case N = 0 is that of bilinear interpolation with 

$0(t) = (1 - t> and 1Go(f) = t. (3) 

The case N = 1 is that of bicubic Hermite interpolation with cardinal basis functions 

$0(t) = (t - 1yy2t + 11, 
MO = (t - 1)” t, 
l,bo(t) = C&(1 - t) = ty-2t + 3), (4) 

$f51(f) = +(I - t) = P(t - 1). 
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The use of the interpolant (2) in every element of a regular partition of Q, with in each 
case a suitable transformation of co-ordinates, produces over 52 a piecewise poly- 
nomial function with CN continuity. 

However, the partition may not be regular, as for example when the mesh is 
refined locally in some subdomain of D by (say) a successive halving procedure as in 
Fig. 1. In this case interpolant (2) cannot be used as it stands in every element, because 
some elements of the mesh possess hanging points, such as the point (4, 0) illustrated 
in the standard element E of Fig. 2. We wish on this nonregular mesh to produce a 
function which is P(Q). Our method, which is described below, is not the only 

FIG. 1. Local Mesh refinement. 
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FIG. 2. Five node “standard” element. 
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technique for doing this. However, its merits, when compared with an obvious 
alternative, are discussed in Section 4. 

In order to produce our function which is P(Q), we have to construct an inter- 
polant which maintains CN continuity over the “five-node standard element” E of 
Fig. 2 and its edges. We achieve this by introducing into this element an imaginary 
node at (a, 1). The two halves of the element (5 2 $) are then considered separately. 
For each, consideration of the continuity across 7 = 1 demands that at the point 
ta, 1) 

This value can then be inserted into the respective local interpolation functions over 
[O, 81 x [0, l] and [a, l] x [O, I], where these are g&en by (2) after suitable changes 
of scale and origin. For example on [0, &] x [0, 11, let 

(6) 

0 ------- 
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where in (6) the pi,j is defined by (5). For the cases N 2-z 0 and I, the $‘s and #‘s are 
as in (3) and (4), respectively. The combination of (6) in [0, 31 x [0, I] together with 
its dual in [k, I] x [0, I] produces a five-node interpolant in E with the required 
continuity. 

On the mesh with local refinement as in Fig. I, suitable transformations of the 
above five node element as required, and of interpolant (2) for every four node 
element, produce the desired piecewise polynomial C”(Q) function. The trial functions 
of the Galerkin method on the refined meshes are chosen from the spaces of inter- 
polating functions of this type. Two examples of the use of the refinement scheme are 
now given. 

3. APPLICATIONS OF THE REFINEMENT SCHI:.ME 

3.1 Harmonic Problem 

The function z/(x, y) satisfies 

-d[u(x, y)] = 0, (x, J) E: a, 
u(x, 4’) = 500, (xv .v) E BC, 

-- 
U(.Y, y) =-- 0, (x, J) E EO, 

(7) 

where Q is the rectangular region OBCDEO of Fig. 3, which for this problem is 
such that EO == OB = RC =- 4. 

This problem is derived using symmetry from a well known and much studied 
harmonic problem in the whole rectangle OBCDEFGHO containing a slit, and which 
contains a singularity at 0 (see [9-131). 

The Galerkin method is used to solve the weak form of (7). As this method is now 
so well known, having appeared in text books and in many survey articles, it will not 
be described in detail here. The GaIerkin method is applied using over Q a square 
mesh of side h = l/14 and with C” trial functions based on (2) and (3). Numerical 
results so obtained are given at the three specific points P = (0, I; 14), Q I: (-- I/14,0) 
and R :: (c. +) of Q in Fig. 4. These should be compared with accurate results 
obtained by Whiteman and Papamichael [13] using a conformal transformation 
method (CTM), which are also given in Fig. 4. It will be seen that with no refinement 
accuracy is poor, especially in the neighborhood of 0. In order to improve this we 
use local mesh refinement based on the refinement scheme of Section 2. 

The conforming condition for harmonic problems demands that trial functions be in 
Co(Q). Thus the refinement scheme is applied with N = 0 in (2) and (6). Levels of 
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Number of 
Levels of 

Refinement 

Value of U(x, y) at 

P E CO,+&) Q E(-&,O) R s ($-, +) 

0 (h = &) 
1 

2 

3 

4 

5 

6 

I 

8 

CTM [13] 
Results 

97.05 147.05 88.73 

99.61 150,52 89.78 

101.62 153.39 90.3 I 

102.72 154.92 90.57 

103.27 155.69 90.70 

103.54 156.07 90.78 

103.68 156.26 90.80 

103.75 156.36 90.82 

103.78 156.40 90.83 

103.77 156.48 91.34 

FIG. 4. Harmonic problem; each level of refinement produces eight extra mesh points. 

refinement ranging from 1 to 8 are used, and the respective results, given in Fig. 4, 
show an improvement of accuracy as refinement increases. It is seen that the stage 
has been reached where the Galerkin solutions are more accurate near the singularity 
than they are at points remote from 0. The effect of the singularity on the numerical 
solution has thus been neutralized by the refinement, and the errors on the coarse 
mesh are due to the mesh spacing. 

3.2 Biharmonic Problem 

The function U(X, y) satisfies 

~2Mx, Y)l = 0, (x, Y) (2 J-5 

4% Y) = 0, --t&j-- = 
WX? Y) 0 

, (zc, y) E m 

a, Y> = 0, -x&- = 
a47 Y) 0 

3 

u(x,y) = +g+ 
a2 

ax+--, 
au 

2 1 
- = 0, (x,y)zB, 
ay 

a24 
u(x, y) = 2oa2, ax = 2aa, (x, Y) e DE, 

(8) 

where L2 is again the slit rectangular region of Fig. 3, and the appropriate symmetric 
boundary values are assumed on the lower rectangle. This problem is that of a two- 
dimensional elastic solid in a rectangle containing a crack subjected to an inplane 
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load 0’. For the model problem in question we take BO = OE = a = .4, BC = .7 
and (T = lo*, and apply the Galerkin technique to (8) with the refinement scheme of 
Fig. 1 using a Cl(Q) function, based on the interpolants (2) and (6) with N = 1, 
and with a coarse mesh of length h = .l. Levels of refinement ranging from 1 to 7 
are used and the results, given in Fig. 5, show the improvement in accuracy. The 
comparison in this case is with numerical values obtained by Bernal and Whiteman [3] 
using an adaptation of the standard thirteen-point finite difference replacement for 
the biharmonic operator through the use of singular functions having the form of the 
dominant part of the singularity in the neighborhood of the end of the slit. 

Number of 
Levels of 

Refinement 

0 (h = 1%) 

1 

2 

3 

4 

5 

6 

7 

F-D [3] 
Results 

P = (0, &) 

133.1 

139.7 

143.1 

144.8 

145.7 

146.1 

146.3 

146.4 

147 

Value of U(x, Jo) at 

Q E (& , 0) R s (-&, 9, 

470.4 47.7 

488.7 47.7 

498.5 47.8 

503.3 47.8 

505.7 47.8 

506.9 47.8 

507.5 47.8 

507.8 47.8 

508 48 

” 

FIG. 5. Biharmonic problem; each level of refinement introduces seventeen extra mesh points 
as symmetry has not been exploited. 

4. DISCUSSION 

The refinement method proposed here has to be compared with the other finite 
element techniques listed in Section 1. It has the advantage that it is simple to imple- 
ment, and in particular it is much simpler to program than the method of augmenting 
the trial function space with singular functions. The basic simplicity of this method 
stems from the repetitive nature of the refinement. The convergence of refined results 
for the problem defined by (8) to those of [3] is significant, considering that the methods 
are in no way related. 

An important though simple point is that in our five node element, Fig. 2, the 
values at the node (t, 0) have been introduced as unknowns. A more obvious tech- 
nique would be to replace the unknown values at (8, 0) by the Hermite interpolants 
between values at (0, 0) and (1, 0). This would have the effect of introducing the 
coarse mesh spacing into the refined mesh. Thus the benefit of the higher local 
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accuracy of the refined mesh is not gained immediately, since the domain of influence 
of the coarse mesh spreads into that of the fine mesh. Numerical experiments by 
Galliara [5] with the problem defined by (7) verify this fact. 

From the results of Section 3 we feel that this refinement is a viable alternative to 
other techniques for dealing with boundary singularities. 
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